使用 Hugging Face Transformers 和 QLoRA 针对视觉任务微调 Gemma

本指南将向您详细介绍如何使用 Hugging Face TransformersTRL 针对自定义图片和文本数据集微调 Gemma,以执行视觉任务(生成商品说明)。您会了解到以下内容:

  • 什么是量化低秩自适应 (QLoRA)
  • 设置开发环境
  • 创建和准备用于视觉任务的微调数据集
  • 使用 TRL 和 SFTTrainer 微调 Gemma
  • 测试模型推理,并根据图片和文本生成商品说明。

什么是量化低秩自适应 (QLoRA)

本指南演示了如何使用量化低秩自适应 (QLoRA)。由于它可以减少计算资源需求,同时保持高性能,因此已成为高效微调 LLM 的热门方法。在 QloRA 中,预训练模型会量化为 4 位,并且权重会被冻结。然后,附加可训练的适配器层 (LoRA),并且仅训练适配器层。之后,适配器权重可以与基准模型合并,也可以保留为单独的适配器。

设置开发环境

第一步是安装 Hugging Face 库(包括 TRL)和数据集,以微调开放模型。

# Install Pytorch & other libraries
%pip install "torch>=2.4.0" tensorboard torchvision

# Install Gemma release branch from Hugging Face
%pip install "transformers>=4.51.3"

# Install Hugging Face libraries
%pip install  --upgrade \
  "datasets==3.3.2" \
  "accelerate==1.4.0" \
  "evaluate==0.4.3" \
  "bitsandbytes==0.45.3" \
  "trl==0.15.2" \
  "peft==0.14.0" \
  "pillow==11.1.0" \
  protobuf \
  sentencepiece

在开始训练之前,您必须确保已接受 Gemma 的使用条款。您可以在 Hugging Face 上接受许可,方法是点击模型页面(网址为 http://huggingface.co/google/gemma-3-4b-pt,或您所用的具有视觉功能的 Gemma 模型的相应模型页面)上的“同意并访问代码库”按钮。

接受许可后,您需要有效的 Hugging Face 令牌才能访问该模型。如果您是在 Google Colab 中运行,则可以使用 Colab Secret 安全地使用 Hugging Face 令牌;否则,您可以直接在 login 方法中设置令牌。由于您会在训练期间将模型推送到 Hub,因此请确保您的令牌也具有写入权限。

from google.colab import userdata
from huggingface_hub import login

# Login into Hugging Face Hub
hf_token = userdata.get('HF_TOKEN') # If you are running inside a Google Colab
login(hf_token)

创建和准备微调数据集

在微调 LLM 时,请务必了解您的应用场景和要解决的任务。这有助于您创建数据集来微调模型。如果您尚未定义用例,不妨回到起点重新思考。

例如,本指南重点介绍以下使用场景:

  • 微调 Gemma 模型,为电子商务平台生成经过搜索引擎优化的简洁商品说明,专为移动搜索量身定制。

本指南使用 philschmid/amazon-product-descriptions-vlm 数据集,该数据集包含 Amazon 商品说明,包括商品图片和类别。

Hugging Face TRL 支持多模态对话。重要的部分是“image”角色,它会告知处理类应加载图片。结构应遵循以下格式:

{"messages": [{"role": "system", "content": [{"type": "text", "text":"You are..."}]}, {"role": "user", "content": [{"type": "text", "text": "..."}, {"type": "image"}]}, {"role": "assistant", "content": [{"type": "text", "text": "..."}]}]}
{"messages": [{"role": "system", "content": [{"type": "text", "text":"You are..."}]}, {"role": "user", "content": [{"type": "text", "text": "..."}, {"type": "image"}]}, {"role": "assistant", "content": [{"type": "text", "text": "..."}]}]}
{"messages": [{"role": "system", "content": [{"type": "text", "text":"You are..."}]}, {"role": "user", "content": [{"type": "text", "text": "..."}, {"type": "image"}]}, {"role": "assistant", "content": [{"type": "text", "text": "..."}]}]}

现在,您可以使用 Hugging Face Datasets 库加载数据集,并创建一个提示模板来组合图片、商品名称和类别,以及添加系统消息。数据集包含作为 Pil.Image 对象的图片。

from datasets import load_dataset
from PIL import Image

# System message for the assistant
system_message = "You are an expert product description writer for Amazon."

# User prompt that combines the user query and the schema
user_prompt = """Create a Short Product description based on the provided <PRODUCT> and <CATEGORY> and image.
Only return description. The description should be SEO optimized and for a better mobile search experience.

<PRODUCT>
{product}
</PRODUCT>

<CATEGORY>
{category}
</CATEGORY>
"""

# Convert dataset to OAI messages
def format_data(sample):
    return {
        "messages": [
            {
                "role": "system",
                "content": [{"type": "text", "text": system_message}],
            },
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": user_prompt.format(
                            product=sample["Product Name"],
                            category=sample["Category"],
                        ),
                    },
                    {
                        "type": "image",
                        "image": sample["image"],
                    },
                ],
            },
            {
                "role": "assistant",
                "content": [{"type": "text", "text": sample["description"]}],
            },
        ],
    }

def process_vision_info(messages: list[dict]) -> list[Image.Image]:
    image_inputs = []
    # Iterate through each conversation
    for msg in messages:
        # Get content (ensure it's a list)
        content = msg.get("content", [])
        if not isinstance(content, list):
            content = [content]

        # Check each content element for images
        for element in content:
            if isinstance(element, dict) and (
                "image" in element or element.get("type") == "image"
            ):
                # Get the image and convert to RGB
                if "image" in element:
                    image = element["image"]
                else:
                    image = element
                image_inputs.append(image.convert("RGB"))
    return image_inputs

# Load dataset from the hub
dataset = load_dataset("philschmid/amazon-product-descriptions-vlm", split="train")

# Convert dataset to OAI messages
# need to use list comprehension to keep Pil.Image type, .mape convert image to bytes
dataset = [format_data(sample) for sample in dataset]

print(dataset[345]["messages"])

使用 TRL 和 SFTTrainer 微调 Gemma

现在,您可以对模型进行微调了。借助 Hugging Face TRL SFTTrainer,您可以轻松监督微调开放式 LLM。SFTTrainertransformers 库中的 Trainer 的子类,支持所有相同的功能(包括日志记录、评估和检查点),但还添加了其他实用功能,包括:

  • 数据集格式设置,包括对话格式和指令格式
  • 仅根据完成情况进行训练,忽略提示
  • 打包数据集以提高训练效率
  • 支持参数高效微调 (PEFT),包括 QloRA
  • 准备模型和分词器以进行对话式微调(例如添加特殊标记)

以下代码会从 Hugging Face 加载 Gemma 模型和分词器,并初始化量化配置。

import torch
from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig

# Hugging Face model id
model_id = "google/gemma-3-4b-pt" # or `google/gemma-3-12b-pt`, `google/gemma-3-27-pt`

# Check if GPU benefits from bfloat16
if torch.cuda.get_device_capability()[0] < 8:
    raise ValueError("GPU does not support bfloat16, please use a GPU that supports bfloat16.")

# Define model init arguments
model_kwargs = dict(
    attn_implementation="eager", # Use "flash_attention_2" when running on Ampere or newer GPU
    torch_dtype=torch.bfloat16, # What torch dtype to use, defaults to auto
    device_map="auto", # Let torch decide how to load the model
)

# BitsAndBytesConfig int-4 config
model_kwargs["quantization_config"] = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=model_kwargs["torch_dtype"],
    bnb_4bit_quant_storage=model_kwargs["torch_dtype"],
)

# Load model and tokenizer
model = AutoModelForImageTextToText.from_pretrained(model_id, **model_kwargs)
processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it")

SFTTrainer 支持与 peft 的内置集成,这样您就可以轻松使用 QLoRA 高效地调优 LLM。您只需创建 LoraConfig 并将其提供给培训师即可。

from peft import LoraConfig

peft_config = LoraConfig(
    lora_alpha=16,
    lora_dropout=0.05,
    r=16,
    bias="none",
    target_modules="all-linear",
    task_type="CAUSAL_LM",
    modules_to_save=[
        "lm_head",
        "embed_tokens",
    ],
)

在开始训练之前,您需要定义要在 SFTConfig 中使用的超参数,以及用于处理视觉处理的自定义 collate_fncollate_fn 会将包含文本和图片的消息转换为模型可以理解的格式。

from trl import SFTConfig

args = SFTConfig(
    output_dir="gemma-product-description",     # directory to save and repository id
    num_train_epochs=1,                         # number of training epochs
    per_device_train_batch_size=1,              # batch size per device during training
    gradient_accumulation_steps=4,              # number of steps before performing a backward/update pass
    gradient_checkpointing=True,                # use gradient checkpointing to save memory
    optim="adamw_torch_fused",                  # use fused adamw optimizer
    logging_steps=5,                            # log every 5 steps
    save_strategy="epoch",                      # save checkpoint every epoch
    learning_rate=2e-4,                         # learning rate, based on QLoRA paper
    bf16=True,                                  # use bfloat16 precision
    max_grad_norm=0.3,                          # max gradient norm based on QLoRA paper
    warmup_ratio=0.03,                          # warmup ratio based on QLoRA paper
    lr_scheduler_type="constant",               # use constant learning rate scheduler
    push_to_hub=True,                           # push model to hub
    report_to="tensorboard",                    # report metrics to tensorboard
    gradient_checkpointing_kwargs={
        "use_reentrant": False
    },  # use reentrant checkpointing
    dataset_text_field="",                      # need a dummy field for collator
    dataset_kwargs={"skip_prepare_dataset": True},  # important for collator
)
args.remove_unused_columns = False # important for collator

# Create a data collator to encode text and image pairs
def collate_fn(examples):
    texts = []
    images = []
    for example in examples:
        image_inputs = process_vision_info(example["messages"])
        text = processor.apply_chat_template(
            example["messages"], add_generation_prompt=False, tokenize=False
        )
        texts.append(text.strip())
        images.append(image_inputs)

    # Tokenize the texts and process the images
    batch = processor(text=texts, images=images, return_tensors="pt", padding=True)

    # The labels are the input_ids, and we mask the padding tokens and image tokens in the loss computation
    labels = batch["input_ids"].clone()

    # Mask image tokens
    image_token_id = [
        processor.tokenizer.convert_tokens_to_ids(
            processor.tokenizer.special_tokens_map["boi_token"]
        )
    ]
    # Mask tokens for not being used in the loss computation
    labels[labels == processor.tokenizer.pad_token_id] = -100
    labels[labels == image_token_id] = -100
    labels[labels == 262144] = -100

    batch["labels"] = labels
    return batch

现在,您已拥有创建 SFTTrainer 所需的所有构建块,可以开始训练模型了。

from trl import SFTTrainer

trainer = SFTTrainer(
    model=model,
    args=args,
    train_dataset=dataset,
    peft_config=peft_config,
    processing_class=processor,
    data_collator=collate_fn,
)

通过调用 train() 方法开始训练。

# Start training, the model will be automatically saved to the Hub and the output directory
trainer.train()

# Save the final model again to the Hugging Face Hub
trainer.save_model()

在测试模型之前,请务必释放内存。

# free the memory again
del model
del trainer
torch.cuda.empty_cache()

使用 QLoRA 时,您只需训练适配器,而无需训练完整模型。这意味着,在训练期间保存模型时,您只会保存适配器权重,而不会保存完整模型。如果您想保存完整模型,以便更轻松地与 vLLM 或 TGI 等服务堆栈搭配使用,可以使用 merge_and_unload 方法将适配器权重合并到模型权重,然后使用 save_pretrained 方法保存模型。这会保存一个默认模型,该模型可用于推理。

from peft import PeftModel

# Load Model base model
model = AutoModelForImageTextToText.from_pretrained(model_id, low_cpu_mem_usage=True)

# Merge LoRA and base model and save
peft_model = PeftModel.from_pretrained(model, args.output_dir)
merged_model = peft_model.merge_and_unload()
merged_model.save_pretrained("merged_model", safe_serialization=True, max_shard_size="2GB")

processor = AutoProcessor.from_pretrained(args.output_dir)
processor.save_pretrained("merged_model")

测试模型推理并生成商品说明

训练完成后,您需要评估和测试模型。您可以从测试数据集中加载不同的样本,并针对这些样本评估模型。

import torch

# Load Model with PEFT adapter
model = AutoModelForImageTextToText.from_pretrained(
  args.output_dir,
  device_map="auto",
  torch_dtype=torch.bfloat16,
  attn_implementation="eager",
)
processor = AutoProcessor.from_pretrained(args.output_dir)

您可以通过提供商品名称、类别和图片来测试推理。sample 包含一个漫威动作人偶。

import requests
from PIL import Image

# Test sample with Product Name, Category and Image
sample = {
  "product_name": "Hasbro Marvel Avengers-Serie Marvel Assemble Titan-Held, Iron Man, 30,5 cm Actionfigur",
  "category": "Toys & Games | Toy Figures & Playsets | Action Figures",
  "image": Image.open(requests.get("https://m.media-amazon.com/images/I/81+7Up7IWyL._AC_SY300_SX300_.jpg", stream=True).raw).convert("RGB")
}

def generate_description(sample, model, processor):
    # Convert sample into messages and then apply the chat template
    messages = [
        {"role": "system", "content": [{"type": "text", "text": system_message}]},
        {"role": "user", "content": [
            {"type": "image","image": sample["image"]},
            {"type": "text", "text": user_prompt.format(product=sample["product_name"], category=sample["category"])},
        ]},
    ]
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    # Process the image and text
    image_inputs = process_vision_info(messages)
    # Tokenize the text and process the images
    inputs = processor(
        text=[text],
        images=image_inputs,
        padding=True,
        return_tensors="pt",
    )
    # Move the inputs to the device
    inputs = inputs.to(model.device)

    # Generate the output
    stop_token_ids = [processor.tokenizer.eos_token_id, processor.tokenizer.convert_tokens_to_ids("<end_of_turn>")]
    generated_ids = model.generate(**inputs, max_new_tokens=256, top_p=1.0, do_sample=True, temperature=0.8, eos_token_id=stop_token_ids, disable_compile=True)
    # Trim the generation and decode the output to text
    generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    return output_text[0]

# generate the description
description = generate_description(sample, model, processor)
print(description)

总结和后续步骤

本教程介绍了如何使用 TRL 和 QLoRA 对 Gemma 模型进行微调,以便执行视觉任务,尤其是生成商品说明。接下来,请参阅以下文档: